
OOP: Type-bound Procedures and
Inheritance in Fortran 2003

Tom Clune
SIVO Fortran 2003 Series

May 6, 2008

4/22/08 OOP Inheritance 2

Logistics
 Materials for this series can be found at

http://modelingguru.nasa.gov/clearspace/docs/DOC-1375
 Contains slides and source code examples.
 Latest materials may only be ready at-the-last-minute.

 Please be courteous:
 Remote attendees should use “*6” to toggle the mute. This

will minimize background noise for other attendees.

4/22/08 OOP Inheritance 3

Outline
 Variables as Objects

 Type-bound procedures
 Invocation of methods
 Operators
 Constructors
 Final procedures

 Type Extension and Inheritance
 Extends attribute
 Abstract Types
 Abstract Interfaces
 Deferred procedures

4/22/08 OOP Inheritance 4

Type-bound Procedures
 Or “Procedures Bound to a Type by Name”
 Allows a Fortran subroutine or procedure to be treated as a

method on an object of the given type.
call object % method(…)
x = object % func(…)

which is equivalent to
call method(object, …)
x = func(object, …)

 This syntax encourages an object-oriented style of programming
that can improve clarity in some contexts.

 Procedures can also be bound by type to operators: [=, +, etc.]
 Restrictions

 Cannot be used with SEQUENCE types.

4/22/08 OOP Inheritance 5

Type-bound Syntax
 The following example defines a derived type with 2 type bound

procedures compute() and retrieve()

type myType
 real :: value

 contains
 procedure :: compute
 procedure :: retrieve
end type myType

 Type-bound procedures must be module procedures or external
procedures with explicit interfaces.

 By default type-bound names are public, but each entity in a
type (including components) can be have a PUBLIC/PRIVATE
attribute.

4/22/08 OOP Inheritance 6

Type-bound Procedures
 Specific type-bound procedures

 Syntax
procedure [(interface-name)] [[,bind-attr-list] ::

] tbp-name [=>procedure-name]

where bind-attr-list is one of

access-spec (public or private)

deferred

nopass

non_overridable

pass [(arg-name)]

 (interface-name)if and only if deferred attribute

 non_overridable => cannot be overridden during type extension

4/22/08 OOP Inheritance 7

Full example
module myType_mod

private
public :: myType

type myType
real :: myValue(4) = 0.0

contains
procedure :: write

 procedure :: reset
end type myType

contains
subroutine write (this, unit)

 class(mytype) :: this
 integer, optional :: unit
 if(present(unit)) then
 write (unit, *) this % myValue
 else
 print *, this%myvalue

 endif
end subroutine write_mytype

…

…
 subroutine reset(variable)

 class(mytype) :: variable
 variable%myvalue = 0.0

 end subroutine reset
end module myType_mod

use mytype_mod

type (myType) :: var

…

call var%write(unit=6)

call var % reset()

Usage:

4/22/08 OOP Inheritance 8

Passed-object dummy arg
 By default, type-bound procedures pass the object as the first

argument.
 Can override behavior with NOPASS attribute:

procedure, NOPASS :: method
…
call thing % method(…) ! No object is passed

 Can also specify which argument is to be associated with the
passed-object with the PASS attribute:
procedure, PASS(obj) :: method
…
subroutine method(x,obj,y)
…
call thing % method(x, y) ! Thing is 2nd obj.

 The default can be explicitly confirmed by
procedure, PASS :: method

 Strongly recommend that you always use the default.

4/22/08 OOP Inheritance 9

Renaming and Generic
 Type-bound procedures can specify an alternative

public name using a mechanism analagous to that for
the module ONLY clause:

procedure :: write => writeInternal
 Similarly, an external name can be overloaded for

multiple interfaces with the GENERIC statement:
type myType
contains
 procedure :: addInteger
 procedure :: addReal
 generic ::add=>addInteger,addReal

 end type

4/22/08 OOP Inheritance 10

Type-bound Operators
 Syntax is through the GENERIC statement:
type SomeType

…
contains

GENERIC :: OPERATOR(+) => myAdd
GENERIC :: OPERATOR(=) => myAssign

end type

type (SomeType) :: a, b, c
…
a = b + c ! Invokes myAdd, then myAssign

4/22/08 OOP Inheritance 11

Structure Constructors
 To support object oriented programming, F2003 has

introduced more general structure constructors
 A generic name may the same as a derived type name

 Allows standard OO style where class constructors use the
same name as that of the class itself.

 Default constructor accepts an argument for each public
component
 Requires any/all private components to have default initial values.

 User may overload generic name to provide multiple means
for constructing objects of a given type.

4/22/08 OOP Inheritance 12

Finalizers
 A derived type may have ‘final’ subroutines bound to it.

 Designated with FINAL keyword
type T

 contains
 FINAL :: cleanUp

 end type

 Intent is to clean-up when objects cease to exist (I.e. go out of
scope).
 Usually this involves deallocating components of a derived type
 Potentially eliminates issues related to memory leaks.

 Note: FINAL routines are always available regardless of
PUBLIC/PRIVATE designation

 Invoked automatically not by user code!
 Can catch developers off guard.

4/22/08 OOP Inheritance 13

Finalizers cont’d
 Sole dummy argument cannot be INTENT(OUT)
 Can overload for multiple ranks - or use ELEMENTAL
 A derived type is finalizable if it has any final

subroutines or has components that are finalizable
 Final subroutines only deal with those components which are

not themselves finalizable.

4/22/08 OOP Inheritance 14

Inheritance
 Fortran 2003 introduces OOP inheritance via the EXTENDS

attribute for user defined types.
 Implementation is restricted to single inheritance

 Inheritance always forms hierarchical trees.
 No “diamond” patterns which can happen in C++

 Implementation is designed to be efficient such that offsets for
components and type-bound procedures can be computed at
compile time. (“single lookup”)

 With type extension, a developer may add new
components and type-bound procedures to an existing
derived type even without access to the source code for
that type.

4/22/08 OOP Inheritance 15

Inheritance terminology
 A type is considered to be extensible if it is:

 Not a SEQUENCE type
 Not BIND(C)

 An extensible type without the EXTENDS attribute is considered to be
a ‘base type’.
 Base types need not have any components.
 Extension need not add any components.

 A type with the EXTENDS attribute is said to be an extended type.
 ‘Parent type’ is used for the type from which the extension is made.
 All the components, and bound procedures of the parent type are

inherited by the extended type and they are known by the same
names.

 An extended type can be a parent for yet another type, and so on.

4/22/08 OOP Inheritance 16

Syntax for Extends
type Location2D

real :: latitude, longitude
end type Location2D

type, EXTENDS (Location2D) :: Location3D
real :: pressureHeight

end type Location3D
…
type (Location3D) :: location
lat = location % latitude
lon = location % longitude
height = location % pressureHeight

Parent type

4/22/08 OOP Inheritance 17

The Parent Component
 Every extended type has an implicit component

associated with the parent type
 The component name is the type name of the parent.
 Provides multiple mechanisms to access components in

parent type
 From the previous example we could do:

 type(Location2D) :: latLon
 latLon = location % Location2D
 lat = location % Location2D % latitude

4/22/08 OOP Inheritance 18

Extends and Type-bound
 Type-bound procedures in the parent may be invoked

within extended types.
 Extended types may add additional type-bound

procedures in the natural fashion.
 An extended type can override a type-bound

procedure in the parent - specifying new behavior in
the extended type.
 The keyword NON_OVERRIDABLE can be used to prohibit

extended classes from overriding behavior:
procedure, NON_OVERRIDABLE :: foo

4/22/08 OOP Inheritance 19

Overriding Example
type Square
 real :: length
contains
 procedure :: area => squareArea
end type Square

type, extends(Square) :: rectangle
real :: width

contains
 procedure :: area => rectangleArea
end type Rectangler

Real function squareArea(this)
squareArea = (this % length) ** 2

Real function rectangleArea(this)
rectangleArea = (this % length) * (this % width)

4/22/08 OOP Inheritance 20

Abstract Types
 It is often useful to have a base type that declares

methods (type-bound procedures) that are not
implemented except in extended classes.

 Fortran 2003 uses the ABSTRACT attribute to denote
such a type.
 The DEFERRED attribute is used for those methods which are

not to be implemented.
 Requires a template or abstract interfac

 No variables can be declared to be of an abstract type.

4/22/08 OOP Inheritance 21

Abstract Example
type, ABSTRACT :: AbstractShape
contains
procedure (AreaInterface), DEFERRED :: area

end type AbstractShape
…
abstract interface
subroutine AreaInterface(obj)
 import AbstractShape
 class (AbstractShape) :: obj
end subroutine AreaInterface

end interface

4/22/08 OOP Inheritance 22

Abstract Example cont’d
type, extends(AbstractShape) :: Square
 real :: length
contains
procedure :: area => squareArea !
Provide concrete

end type Square

4/22/08 OOP Inheritance 23

Supported features
 Generaly, IBM XLF and NAG F95 support the majority

of the features presented here.
 g95, gfortran generally support none of these yet.

4/22/08 OOP Inheritance 24

Pitfalls and Best Practices
 Type-bound procedures:

 Always use the first argument (the default) as the object
argument for type-bound procedures.

 Use a standardized name for the object argument such as
“this” or “self” to increase clarity.

4/22/08 OOP Inheritance 25

Resources
 SIVO Fortran 2003 series:

 https://modelingguru.nasa.gov/clearspace/docs/DOC-1390
 Questions to Modeling Guru: https://modelingguru.nasa.gov
 SIVO code examples on Modeling Guru
 Fortran 2003 standard:

http://www.open-std.org/jtc1/sc22/open/n3661.pdf
 John Reid summary:

 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.pdf
 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.ps.gz

 Newsgroups
 http://groups.google.com/group/comp.lang.fortran

 Mailing list
 http://www.jiscmail.ac.uk/lists/comp-fortran-90.html

4/22/08 OOP Inheritance 26

Next Fortran 2003 Session
 OOP: Polymorphism in Fortran 2003
 Tom Clune will present
 Tuesday, May 20, 2008
 B28-E210 @ 12:00 noon

